
OOP: Type-bound Procedures and
Inheritance in Fortran 2003

Tom Clune
SIVO Fortran 2003 Series

May 6, 2008

4/22/08 OOP Inheritance 2

Logistics
 Materials for this series can be found at

http://modelingguru.nasa.gov/clearspace/docs/DOC-1375
 Contains slides and source code examples.
 Latest materials may only be ready at-the-last-minute.

 Please be courteous:
 Remote attendees should use “*6” to toggle the mute. This

will minimize background noise for other attendees.

4/22/08 OOP Inheritance 3

Outline
 Variables as Objects

 Type-bound procedures
 Invocation of methods
 Operators
 Constructors
 Final procedures

 Type Extension and Inheritance
 Extends attribute
 Abstract Types
 Abstract Interfaces
 Deferred procedures

4/22/08 OOP Inheritance 4

Type-bound Procedures
 Or “Procedures Bound to a Type by Name”
 Allows a Fortran subroutine or procedure to be treated as a

method on an object of the given type.
call object % method(…)
x = object % func(…)

which is equivalent to
call method(object, …)
x = func(object, …)

 This syntax encourages an object-oriented style of programming
that can improve clarity in some contexts.

 Procedures can also be bound by type to operators: [=, +, etc.]
 Restrictions

 Cannot be used with SEQUENCE types.

4/22/08 OOP Inheritance 5

Type-bound Syntax
 The following example defines a derived type with 2 type bound

procedures compute() and retrieve()

type myType
 real :: value

 contains
 procedure :: compute
 procedure :: retrieve
end type myType

 Type-bound procedures must be module procedures or external
procedures with explicit interfaces.

 By default type-bound names are public, but each entity in a
type (including components) can be have a PUBLIC/PRIVATE
attribute.

4/22/08 OOP Inheritance 6

Type-bound Procedures
 Specific type-bound procedures

 Syntax
procedure [(interface-name)] [[,bind-attr-list] ::

] tbp-name [=>procedure-name]

where bind-attr-list is one of

access-spec (public or private)

deferred

nopass

non_overridable

pass [(arg-name)]

 (interface-name)if and only if deferred attribute

 non_overridable => cannot be overridden during type extension

4/22/08 OOP Inheritance 7

Full example
module myType_mod

private
public :: myType

type myType
real :: myValue(4) = 0.0

contains
procedure :: write

 procedure :: reset
end type myType

contains
subroutine write (this, unit)

 class(mytype) :: this
 integer, optional :: unit
 if(present(unit)) then
 write (unit, *) this % myValue
 else
 print *, this%myvalue

 endif
end subroutine write_mytype

…

…
 subroutine reset(variable)

 class(mytype) :: variable
 variable%myvalue = 0.0

 end subroutine reset
end module myType_mod

use mytype_mod

type (myType) :: var

…

call var%write(unit=6)

call var % reset()

Usage:

4/22/08 OOP Inheritance 8

Passed-object dummy arg
 By default, type-bound procedures pass the object as the first

argument.
 Can override behavior with NOPASS attribute:

procedure, NOPASS :: method
…
call thing % method(…) ! No object is passed

 Can also specify which argument is to be associated with the
passed-object with the PASS attribute:
procedure, PASS(obj) :: method
…
subroutine method(x,obj,y)
…
call thing % method(x, y) ! Thing is 2nd obj.

 The default can be explicitly confirmed by
procedure, PASS :: method

 Strongly recommend that you always use the default.

4/22/08 OOP Inheritance 9

Renaming and Generic
 Type-bound procedures can specify an alternative

public name using a mechanism analagous to that for
the module ONLY clause:

procedure :: write => writeInternal
 Similarly, an external name can be overloaded for

multiple interfaces with the GENERIC statement:
type myType
contains
 procedure :: addInteger
 procedure :: addReal
 generic ::add=>addInteger,addReal

 end type

4/22/08 OOP Inheritance 10

Type-bound Operators
 Syntax is through the GENERIC statement:
type SomeType

…
contains

GENERIC :: OPERATOR(+) => myAdd
GENERIC :: OPERATOR(=) => myAssign

end type

type (SomeType) :: a, b, c
…
a = b + c ! Invokes myAdd, then myAssign

4/22/08 OOP Inheritance 11

Structure Constructors
 To support object oriented programming, F2003 has

introduced more general structure constructors
 A generic name may the same as a derived type name

 Allows standard OO style where class constructors use the
same name as that of the class itself.

 Default constructor accepts an argument for each public
component
 Requires any/all private components to have default initial values.

 User may overload generic name to provide multiple means
for constructing objects of a given type.

4/22/08 OOP Inheritance 12

Finalizers
 A derived type may have ‘final’ subroutines bound to it.

 Designated with FINAL keyword
type T

 contains
 FINAL :: cleanUp

 end type

 Intent is to clean-up when objects cease to exist (I.e. go out of
scope).
 Usually this involves deallocating components of a derived type
 Potentially eliminates issues related to memory leaks.

 Note: FINAL routines are always available regardless of
PUBLIC/PRIVATE designation

 Invoked automatically not by user code!
 Can catch developers off guard.

4/22/08 OOP Inheritance 13

Finalizers cont’d
 Sole dummy argument cannot be INTENT(OUT)
 Can overload for multiple ranks - or use ELEMENTAL
 A derived type is finalizable if it has any final

subroutines or has components that are finalizable
 Final subroutines only deal with those components which are

not themselves finalizable.

4/22/08 OOP Inheritance 14

Inheritance
 Fortran 2003 introduces OOP inheritance via the EXTENDS

attribute for user defined types.
 Implementation is restricted to single inheritance

 Inheritance always forms hierarchical trees.
 No “diamond” patterns which can happen in C++

 Implementation is designed to be efficient such that offsets for
components and type-bound procedures can be computed at
compile time. (“single lookup”)

 With type extension, a developer may add new
components and type-bound procedures to an existing
derived type even without access to the source code for
that type.

4/22/08 OOP Inheritance 15

Inheritance terminology
 A type is considered to be extensible if it is:

 Not a SEQUENCE type
 Not BIND(C)

 An extensible type without the EXTENDS attribute is considered to be
a ‘base type’.
 Base types need not have any components.
 Extension need not add any components.

 A type with the EXTENDS attribute is said to be an extended type.
 ‘Parent type’ is used for the type from which the extension is made.
 All the components, and bound procedures of the parent type are

inherited by the extended type and they are known by the same
names.

 An extended type can be a parent for yet another type, and so on.

4/22/08 OOP Inheritance 16

Syntax for Extends
type Location2D

real :: latitude, longitude
end type Location2D

type, EXTENDS (Location2D) :: Location3D
real :: pressureHeight

end type Location3D
…
type (Location3D) :: location
lat = location % latitude
lon = location % longitude
height = location % pressureHeight

Parent type

4/22/08 OOP Inheritance 17

The Parent Component
 Every extended type has an implicit component

associated with the parent type
 The component name is the type name of the parent.
 Provides multiple mechanisms to access components in

parent type
 From the previous example we could do:

 type(Location2D) :: latLon
 latLon = location % Location2D
 lat = location % Location2D % latitude

4/22/08 OOP Inheritance 18

Extends and Type-bound
 Type-bound procedures in the parent may be invoked

within extended types.
 Extended types may add additional type-bound

procedures in the natural fashion.
 An extended type can override a type-bound

procedure in the parent - specifying new behavior in
the extended type.
 The keyword NON_OVERRIDABLE can be used to prohibit

extended classes from overriding behavior:
procedure, NON_OVERRIDABLE :: foo

4/22/08 OOP Inheritance 19

Overriding Example
type Square
 real :: length
contains
 procedure :: area => squareArea
end type Square

type, extends(Square) :: rectangle
real :: width

contains
 procedure :: area => rectangleArea
end type Rectangler

Real function squareArea(this)
squareArea = (this % length) ** 2

Real function rectangleArea(this)
rectangleArea = (this % length) * (this % width)

4/22/08 OOP Inheritance 20

Abstract Types
 It is often useful to have a base type that declares

methods (type-bound procedures) that are not
implemented except in extended classes.

 Fortran 2003 uses the ABSTRACT attribute to denote
such a type.
 The DEFERRED attribute is used for those methods which are

not to be implemented.
 Requires a template or abstract interfac

 No variables can be declared to be of an abstract type.

4/22/08 OOP Inheritance 21

Abstract Example
type, ABSTRACT :: AbstractShape
contains
procedure (AreaInterface), DEFERRED :: area

end type AbstractShape
…
abstract interface
subroutine AreaInterface(obj)
 import AbstractShape
 class (AbstractShape) :: obj
end subroutine AreaInterface

end interface

4/22/08 OOP Inheritance 22

Abstract Example cont’d
type, extends(AbstractShape) :: Square
 real :: length
contains
procedure :: area => squareArea !
Provide concrete

end type Square

4/22/08 OOP Inheritance 23

Supported features
 Generaly, IBM XLF and NAG F95 support the majority

of the features presented here.
 g95, gfortran generally support none of these yet.

4/22/08 OOP Inheritance 24

Pitfalls and Best Practices
 Type-bound procedures:

 Always use the first argument (the default) as the object
argument for type-bound procedures.

 Use a standardized name for the object argument such as
“this” or “self” to increase clarity.

4/22/08 OOP Inheritance 25

Resources
 SIVO Fortran 2003 series:

 https://modelingguru.nasa.gov/clearspace/docs/DOC-1390
 Questions to Modeling Guru: https://modelingguru.nasa.gov
 SIVO code examples on Modeling Guru
 Fortran 2003 standard:

http://www.open-std.org/jtc1/sc22/open/n3661.pdf
 John Reid summary:

 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.pdf
 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.ps.gz

 Newsgroups
 http://groups.google.com/group/comp.lang.fortran

 Mailing list
 http://www.jiscmail.ac.uk/lists/comp-fortran-90.html

4/22/08 OOP Inheritance 26

Next Fortran 2003 Session
 OOP: Polymorphism in Fortran 2003
 Tom Clune will present
 Tuesday, May 20, 2008
 B28-E210 @ 12:00 noon

